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PROPAGATION OF EVIDENCE THROUGH FUZZY RULES

INTRODUCTION

Most fuzzy system models are based on the principle of embedding (reference 1), which
takes the problem to be solved, embeds it in a richer repreentation space, solves the problem in
this new space, and then projects the solution back into the desired output space. This principle is
a powerful technique often employed in matical analysis. First, consider a classical example
of this tchnique and then an example of the same technique applied to fuzzy systems to illustrat
not only how fuzzy rules are used to solve system problems, but also how evidence is propagat
through the fuzzy rules. Evidence means the degree of ceainty that the data satisfy the ixemis of
the fuzzy rule.

One example of this classical embedding technique is the integration of improper real
integrals (reference 2). First the integrand is complexifled (i.e., the variable of integration is
replaced by a complex variable) so that it can now be embedded in the complex number domain;
complex numbers are a far richer representation than read variables. Then a closed path of
integration is chosen so that the real number line is included in the path. The residue thecem is
then employed to evaluate the integral about the closed path, and the line integral along one part of
the integration path is then the value desired. Decmplexification is trivial since it amounts to
summing all the other components of the integral path to obtain the desired solution. Note in this
case, not only is the problem embedded in a far richer field of numbers, it is also embedded in a far
more complex integration path. Other examples of this can be found in Bezdek's paper
(reference 1).

In fuzzy models, a problem is embedded in a fuzzy rule base system by first fuzzifying the
input, solving the problem using fuzzy rules, and defuzzifying to project back into the solution
space. Figure 1 illustrates the overall block diagram of this system. Fuzzifying the data amounts
to mapping the input variables into linguistic variables, which are defined in terms of fuzzy sets;
the linguistic variable called COLOR is an example and is illustrated in figure 2. Radiation of a
given frequency is translated into linguistic terms with a membership value. The fiequency marked
in this diagram has a 0.3 membership in both GREEN and BLUE. The fuzzy sets defined on the
base variable of frequency define the term set, which in this case consists of (RED, ORANGE,
YELLOW, GREEN, BLUE, INDIGO, VIOLET).

.0''

FUUZY DATA
RULE TERM
BASE SETS

Figure 1. Fwzy System Model
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Figure 2. The Linguistic Variable COLOR

The linguistic variables used in the typical fuzzy control system are usually sensor values.
Figure 3 illustrates how a control system called a taxi driver might determine the rate of braking in
approaching a red lighL Note here that the rate of braking is dependent on the speed of the
automobile and the relative distance to the stoppd cars. Physical laws of momentum dictate that
the faster the vehicle is going and the closer the stop light, then the harder one should brake. For
the specific case considered in figure 3, the entire model consists of two inputs and two rules. The
fuzzy rules have the following form:

IF the speed of the car is high,
AND the distance to the stop light is near,
THEN the braking should be haid.

IF the speed of the car is medium,
AND the distance to the stop light is medium,
THEN the braking should be medium.

Note that the figures are sketches of the solutions, not exact calculated values. The two braking
rules yield different conclusions, which are aggregated to yield a single output braking rate. This
aggregation procedure is called defuzzification and is a simple averaging of the areas in the output
fuzzy sets. Rule conclusion strengths are set equal to the minimum degree of membership that the
inputs have in the premise clauses. In effect, the strength of the output for a rule is determined by
the degree of satisfaction of the premise clauses. Premise satisfaction or certainty and its
propagation through the rules are an inherent part of the solution technique. In fact, the input data
are evidence only if the data are relevant to the rules, and relevance is equated to data satisfaction of
the premise measured by the certainty of the premise. Propagation of the certainty through the ply
to determine the certainty of the conclusion is the propagation of evidence through the fuzzy rule.
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MF WIF WIF

MEDIUM MEDIU MEDIUM

SPEWI D STANCE BRAKINGMIF MF MF

MEDUI A7 'UM AXMEDIUM

IF X IS HIGH AND Y IS NEAR RESULT
THEN BRAKING IS HARDIF X IS MEDIUM AND Y IS MEDIUM

THEN BRAKING IS MEDIUMX I

BRAKING
Figure 3. Typical Output Strength Calculation in Fuzi Control Logic

Figure 3 contains the same basic components shown in the general system of figure 1.
Fuzzification takes place when the sensor values are used as inputs to the term sets or fuzzy
membership functions. The rule base consists of two rules in this small example, and the term sets
are all drawn out using triangular term sets. The inference engine combines the premise certainties
to find the certainty of the conclusion, which is represented by truncating the conclusion
membership function. Defuzzification is the method of aggregating the conclusions to find the
resulting control value.

In the above example, the certainty of the premise or its validity or, equivalently, its degree
of satisfaction is a single-valued real number. Here, the notion of strength is equivalent to the
notion of certainty value or validity. This process is only one way to determine the certainty of the
premise clauses, the premise, and finally the certainty of the output. Certainty can be represented

3



as a single-valued real number, a ceuainty interval, or a linguistic variable. When the fuzzy model
is applied to classification problems, the decisions are more open loop, Le., their validity is not
immediately tested by the system. In effect, there is a larger delay in the feedback loop so it is
more important to know the certainty of the decisions. Here, conclusion certainty is more
important and thus more complex representations better describe the conclusion validity.

The braking example uses a standard defuzzification rule or conclusion aggregation
technique. Other applications require more general aggregation techniques. This example does not
model the strength of the rule itself. Fuzzy rules can associate certainty with the ply. Here,
certainty represents the designer's faith in the rule. This certainty will be factored in the
propagation schemes considered in the next sections.

As outlined above, three certainty representation schemes are considered in this report.
Ordered by representational complexity they are as follows: (1) A single-valued measure of
certainty, (2) an interval-valued measure of certainty, and (3) a functional-valued measure of
certainty. Several fuzzy expert system (FES) shells use the single-valt,-A certainty measure. Part
of the popularity of this measure is its simplicity and practicality. A singe-valued certainty is
associated with the premise, with the ply, and with the consequence. A simple functional
combination of the premise and implication certainty produces the consequence certainty. Hall and
Kandel (reference 3) use a single-valued evaluation of the premise and the ply, but the functional
propagation to the consequence is no longer simple, since it depends on the functional form of the
ply. These results are based on Trillas and Valverde's (reference 4) method of certainty
propagation using a single-valued validity measure.

The second scheme uses interval-valued measures of certainty so that both the premise and
the conclusion have certainty intervals associated with them. The certainty of the ply is represented
by a pair of numbers indicating the strength of the ply in the forward and reverse directions,
repectively. The certainty of the conclusion is derived from the certainty of the premise and the
certainty of the ply. For each rule, the system designer must supply the certainty of the ply and
calculate from the data the certainty interval for the premise. A proponent of this interval-valued
method is Piero Bonissone (references 5-7). Bounds on the premise are generated from the data
using possibility theory. This interval method also can aggregate the conclusion certainty, which
determines the conclusion certainty when several rules reach the same conclusion but with differing
intervals of certainty.

The third method is a generalization of the certainty representation that employs the Fuzzy
Inclusion Index (or index as it will be used in this report) to determine the truth of a fuzzy
predicate. Thus, truth is represented by the membership function of a fuzzy set, which is
compared with the terms of the linguistic variable called TRUTH. This approach was introduced
first by Zadeh (reference 8). This fuzzy certainty measure requires more sophisticated methods for
both propagation and interpretation. The index contains more information than is contained in
either the interval-valued or the single-valued certainty representation. Appendix A discusses the
Fuzzy Inclusion Index in detail.

In what follows, three different certainty representations are discussed. The single-valued
representation as illustrated in the braking example, the interval-valued representation that has the
look and feel of a confidence interval, and the linguistic variable representation where the certainty
is a fuzzy set. With each representation, the propagation of the certainty through the implication is
presented and illustrated. The best choice for the appropriate representation and propagation
scheme is a function of the application. Emphasis in this report is placed on classification
problems, so some conclusions for this type of problem will be drawn.

4



SINGLE-VALUED CERTAINTY PROPAGATION

This section considers a single-valued certainty representation and its propagation through
the implication operator (the ply). There are many different methods for propagation of evidence
through the ply, but only two are discussed here. One method can be found in the expert system
shell Fuzzy Logic Official Production System (FLOPS) as reported in Buckley (references 9-12).
The second method uses the work of Trillas and Valverde (reference 4). Both methods are
discussed below.

Before discussing the propagation of evidence through the implication operator, it
behooves us to discuss why one must explicitly represent the certainty of the ply. In the previous
section, the fuzzy rules had conclusions whose strength was determined as the minimum of the
two premise clauses. The rule was assumed to be absolute so if the premise was satisfied with
certainty one, the conclusion has certainty one. However, not all rules are absolute and the
certainty associated with the ply itself tries to model this; e.g., suppose the rule states if you elect
me, then I will lower your taxes, then one must really model the strength of the ply. Even for
physical models, the conditions may be so uncertain that normal physical laws must be asserted
with reservation. Thus the explicit representation of the implication certainty is a critical
component of the propagation of evidence.

The first method, a simple propagation scheme, determines the certainty of the conclusion
from the certainty of the premise and the ply as follows:

m(v(a), v(a -+ b)) = min(v(a), v(a -+ b)).

This formula states that the certainty of the conclusion is the minimum of the certainty attributed to
the ply and the premise. The function v(a) stands for the validity of the clause called a, and
v(a -- b) is the validity of the rule a -+ b. The validity function is a mapping from the set of

clauses to the interval [0,1]. Validity is Trillas and Valverde's terminology, and one can interpret
this to mean the degree of truth or the certainty. In this report, certainty and validity will be used
interchangeably, but note that the validity is not the same as the degree of membership in a fuzzy
set, except in special cases where the input values are known exactly. In the previous section, the
sensor values were used as arguments to the term sets, and the resulting membership functions
were interpreted as certainties or validities. This special case is important, but if the sensor
readings are fuzzy sets, then this interpretation is meaningless. In these cases, measure of the
overlap and subsethood of the sensor reading with respect to the term sets must be used to
determine the validity of the premise or its clauses.

Premise evaluation uses the minimum of the certainties for conjunctions of clauses forming
the premise. Thus, when the premise is a conjunction of clauses of the form

n
a= flai

i=l

and v(ai) is the truth associated with each of these clauses, then v(a) = min v(ai) .
0•i!n

Disjunctions in the premise can be handled as the maximum of the certainties of the clauses making
up a premise (reference 9, p. 6). Thus, the confidence in the conclusion is the minimum of the
validity of the rule antecedent and ply.
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Evaluating the validity of the premise is the subject of a vast amount of literature. The
validity of the ply is under the purview of the system designer, so its value is assumed to be
known or at least estimated, and the validity of the premise is something that can be calculated from
the data and the fuzzy sets used to represent the premise. Another requirement of the designer is to
supply the matching algorithm for comparing the data with the premise. In this report, matching is
based on the necessity and the possibility, which are defined later. Other matching algorithms are
discussed more thoroughly in appendix B. Thus, ply validities are assumed to be known, and the
premise validities are calculated from the data and the clauses that make up the premise.

Figure 4 illustrates the single-valued certainty propagation algorithm for three distinctly
different fuzzy data inputs. For each case, the certainty value is defined to be the possibility H,
which is H = sup min[#A(x),pB(x)] = sup PA(X) A UB(X) where AA(X) A LB(x) is defined to

xFX XEX
be the min[LA(x),4AB(x)]. The figure illustrates one problem associated with this approach. A
single-valued certainty is not sufficient to account for the overlap and spread of the fuzzy sets
representing the data and the premise. The three cases illustrated all yield the same single-valued
certainty, the degree of overlap of the fuzzy data set A and the fuzzy fact set B. Yet the degree that
the data set is a subset of the fact set is clearly quite different for each of the cases. The single-
valued certainty representation can only capture one facet of the match of the data to the premise.
The strength of the single-valued certainty representation is its simplicity and also its weakness
since one facet of the certainty is not sufficient to describe how the data match the premise. In this
example, the single-valued certainty illustrates the overlap but does not capture the subsethood of
the data to the fact. With only one value to represent the matching of the data to the premise, it is
very important to choose this value carefully, so that it summarizes the important system feature for
the particular application.

ME M

POSSIBILITY,)

0o 0

gI•X) = DATA MF TRUTH VALUE

MF pix) = FACT OR PROPERTY 1

POSSIBILITY

CERTAINTY

Figure 4. Three Examples that Have the Same Single-Valued Certainty

Note that the structure of the ply is essentially ignored, representing its strength as a real
number. In multivalued logic, there are many different plys named after famous logicians.
Assigning a certainty to the ply operator and using the minimum function to propagate the certainty
through the ply to the conclusion avoids the problem of choosing a ply, but does not account for
6



the differences in these implication operators and only applies for the forward direction of the
implication. However, this approach does account for the strength of the rule, and if simplicity is
of paramount importance, then this approach has merit.

In the second method, the structure of the ply is intimately associated with the propagation
of the certainty. This method was developed by Trillas and Valverde (reference 4), which will be
referred to as the TV method. Here, a single-valued estimate of the premise validity is propagated
through the rule using what is called e modus ponens generating function (MPG function). Figure
5 shows the MPG function associated with Lukasiewicz's ply. To use this function of two
arguments, assign one argument as the validity of the ply and the other as the validity of the
premise. The value of the function is the validity of the conclusion illustrated by the surface. This
two-dimensional function is generated using the mathematical definition of the ply itself. This
highly intuitive method keys on four main properties that one would like to attribute to the evidence
as it propagates through a fuzzy rule (reference 4, p. 160). Using the TV notation, one first wants
the pr.pagation model to be conservative, or more precisely, to underestimate the truth of the
conclusions from the available evidence. Mathematically, this means m(v(a), v(a -+ b)) < v(b),
if the conclusion validity v(b)was known. In practice, v(b) is not known. Second, when both
the premise and the consequence are absolutely certain, then the conclusion should be certain, i.e.,
m(l,1) = 1. To simplify the formulas, let x = v(a) and y = v(a -+ b) so the last inequality can
be written m(x,y) <_ v(b). The third condition says that if the premise is totally uncertain, the
consequence should be totally uncertain as well, or m(O,y) = 0. Finally, one needs a condition to
guarantee that fuzzy rules can be chained, i.e., if x < x', then m(x,y) < m(x',y).

1
0.9
0.8-
S0.77

Uj0.6-
0.5-

S0.4-

0.3.

0.1 -0.75

0-o q L 0.250 ,,

C'- r- "I•

Figure 5. Modus Ponens Generating Function Associated with Lukasiewicz's Ply



In addition to these four basic properties, Hall (reference 13) has added several desirable
properties that provide performance improvements. The first property m(x,1) < 1, Vx * I says
that if the premise has any uncertainty associated with it, then the conclusion cannot be absolutely
certain. The second property is that the validity of the conclusion should be less than or equal to
the validity of either the premise or the rule itself, i.e., m(xy) < min(xy). This property
provides an upper bound to the conclusion validity. The final property lower bounds the
conclusion validity away from zero, provided the premise and the ply validity are also bounded
away from zero, i.e., m(x,y) a 0 , if x,y > 0. Intuitively, this property says the validity of the
conclusion should not be zero if there is some validity in the premise and the ply. This rule makes
sense, but provides no sharp lower bound.

Hall (reference 13) considers several plys and their associated MPG function. One ply that
satisfies six of the above seven properties is Lukasiewicz's ply defined as

PA(x)-.+B(y)(x,Y) = min[l,l - .AW(X) + 1Bs(Y)]

where PA represents the fuzzy set associated with the premise and PB represents the fuzzy set
associated with the conclusion. The MPG function for this ply is illustrated in figure 5 and is
given by m(x,y) = max(x + y- 1,0). Clearly, the last property that bounds the conclusion validity
away from zero is not satisfied by this MPG function.

Once the ply and its associated MIPG have been determined, then the certainty propagation
is simply a function evaluation. In practice, this would probably be a table look-up. Thus the
structure of the implication has been included and the certainty propagation is more complex, but
its implementation is straightforward and its run time is trivial.

In applying this method, the validity of compound premises such as (afl c) -* b and
(aUc) -+ b must be evaluated. Now one must find the validities v(anc) and v(aUc) before
one can evaluate the corresponding MPGs, e.g., mfv(aUc), v((aUc) -4 b))]. One would like to
choose v(anc) = min(v(a), v(c)) and it is apparent why - expediency; likewise, v(aUc) =
max(v(a), v(c)). In general, this approach cannot be justified although it is considered
reasonable. Despite this lack of justification, apply this method to the braking example.

The example considered relates to an imaginary taxi driver. The fuzzy rule analyzed is the
detection of a driver making a left-hand turn ahead. In the following rule, the position, slowing
rate, and turn signal refer to the car ahead of the taxi:

IF the left-hand turn signal is on,
AND the car is in the left-hand lane,
AND the car has high deceleration,
THEN the car is turning left.

Figure 6 shows that the validity of each clause of the premise is determined to be 0.6, 0.8, and
0.7, respectively. Note that these values measure only the overlap of the data with the term sets.
The data, a fuzzy set, represent the uncertainty of the observation. Note the left-hand signal is on
with an optimistic validity 0.6; e.g., ff the bright sun is in the driver's eye, it is hard to assign a
higher value to this clause of the premise. This situation accounts for the width and placement of
the fuzzy data. The position of the car is clearly in the left-hand lane giving an optimistic value of
0.8. Accelerations are difficult to estimate, so the third clause yields only an optimistic value of

8



0.7 and the fuzzy set representing the data is wider. Note that the overlap or possibility used to
measure the single value of the certainty captures none of the observational uncertainty. This
information will be used later in the interval-valued certainty representation.

DETECT LEFT-HAND TURN RULE

IF THE LEFT-HAND TURN SIGNAL IS ON
AND THE CAR IS IN THE LEFT-HAND LANE

AND THE CAR HAS HIGH DECELERATION

.Z I THEN THE CAR IS TURNING LEFT

A0.8 0.7

0 POSTIONOR LNE 0 DECELERATION

Figure 6. Detecting a Left-Hand Turn for the Car Ahead

Using the minimum of the validities as the validity of the premise yields

v(a) = min(0.6, 0.8, 0.7) = 0.6.

The validity of the rule or ply is arbitrarily set as v(a -+ b) = 0.8 and the ply is Lukasiewicz's ply
which means v(a -4 b) = min(l,1 - v(a) + v(b)) and the corresponding MPG function (reference
4) is m(v(a), v(a -- b)) = max(0, v(a -+ b) + v(a)- 1) = 0.4. Note that this value of the
conclusion validity is even below the validity of the premise itself. This approach is not the same
as simply taking the minimum of the premise and ply validity, which yields 0.6. Moreover, the
choice of the ply is important as documented by Hall (reference 13), who studied the effects of the
different plys on an expert system.

Kandel (reference 3) discusses conclusion aggregation using a method similar to an
exponential learning rule. However, some of the aggregation operators studied by Klir (reference
14) might provide a more simple approach in this situation. One obvious approach is the
maximum of the conclusion validities for the same conclusion. Conclusion aggregation in control
is usually implemented by using the defuzzification algorithm illustrated in figure 3. When the
certainty representation is no longer single-valued, conclusion aggregation becomes more of a
problem.

The advantages of the two methods of evidence propagation with single-valued certainties
are simplicity and practicality, which are especially important in real-time control algorithms.
Disadvantages of single-valued certainties are most apparent when the data contain distributional
information. Then the single-valued certainty cannot adequately take advantage of this additional
information since it is not a rich enough representation. In a real-time control system, more
complete certainty information is not needed because the negative feedback can quickly adjust

9



using only information proportional to the correct control signal. In this case, certainty information
is very age dependen, meaning its utility decays rapidly with time (ie., the correction is only
relevant for the next short increment of time, until the next correction is calculated). In decision
problems, the certainty of the decision has a longer time utility, so it is worthwhile to invest more
resources in determining the certainty measure. The next two sections address certainty measure
with higher representational complexity.

INTERVAL-VALUED CERTAINTY PROPAGATION

Interval-valued certainties associated with the premises are a natural extension of the single-
valued certainties and are easily generated via the matching process: the possibility and the
necessity. The possibility is an optimistic matching of data to the facts in the database, because it
measures the overlap of the data and the facts and is defined as H = sup min[LuA(x),AB(x)].

xZX
Also the possibility is most often used as a single-valued representation of the premise satisfaction.
The necessity is a conservative certainty measure, which gives the degree of containment of data
within the facts and is defined as N = inf max[l - A(x),B(x)], where A is the fuzzy data and

xEX
B is the fuzzy property representing the premise (reference 15). This conservative measure
provides a lower bound to the satisfaction of the property by the data. Appendix B explores other
alternatives for evaluating premise satisfaction. Figure 7 illustrates the calculation of the possibility
and the necessity for a test set A and a premise test set B. The interval-valued certainty discussed
here is [necessity, possibility]= [N,H].

SSBILITY A (X* NE E S A Wx

0B

POSSIBILITY = suPmin[(p A(X),P B(X)l NECESSITY = inf maxfl-P A (x),/ B(x )]
x x

Figure 7. Calculation of the Necessity and Possibility ofA is B

The certainty of the conclusion is based on the certainty of the premise and the ply, and the
certainty of the ply depends on the definition of the ply. Bonissone (reference 5-7) associates a
pair of values with the ply operator that represents the strength of the implication in the forward
and reverse direction. The reverse direction implication or modus tollens is called backward
chaining by computer scientists and necessity or converse by mathematicians. (The term necessity
used in this context should not be confused with the matching lower bound N called necessity; the
context should make the correct meaning obvious.) The forward direction or modus ponens is
called forward chaining by computer scientists and sufficiency by mathematicians. Thus, the
forward direction strength is denoted by "suff' and the backward direction strength is denoted by
"ness". These terms are used in a detachment operator along with the certainty interval of the
premise to generate a certainty interval for the conclusion. A second method is to define a ply and

10



then propagate the certainty through the ply via the Trillas and Valverde method. Both the lower
and upper bound would then be propagated separately. In the latter case, the membership function
is needed for the premise and the conclusion. The second method is discussed first.

TV's notation and methodology are used to explain the bounds on the conclusion's
certainty. First, note that the complement of a predicate is denoted by n(a) and the validity of the
complement is given by v(n(a)) = 1- v(a). Modus ponens furnishes the lower bound on the
conclusion and modus toilens furnishes the upper bound on the conclusion. In the forward
direction, the certainty is given by m(v(a), v(a -- b)), which furnishes the lower bound since
m(v(a), v(a -+ b)) : v(b). The upper bound is provided by the necessity or backward part of the
implication; i.e., a +- b and the strength of this ply, v(b -- a). Applying modus ponens in the
reverse direction, one has m[v(n(a)), v(n(a) -4 n(b))] < v(n(b)); and then using v(n(b)) =
1 - v(b) yields an upper bound on the validity of the conclusion

v(b) < 1- m[ v(n(a)), v(n(a) -4 n(b))].

Thus, the resultant certainty interval on the conclusion validity is m(v(a), v(a --* b)) 5
v(b) < I- m[ v(n(a)), v(n(a) -+ n(b))]. If contraposition holds, this yields m(v(a), v(a -+ b)) <
v(b) 5 1- m[1- v(a), v(b -- a)]. If upper and lower bounds are known on the validity of the

premise v(a), then applying these, respectively, on the lower and upper bounds of this expression
can yield a more conservative (bigger) interval.

To illustrate this method, consider the taxi driver detecting the car ahead about to make a
left-hand turn. Here the premise interval-valued certainty is determined using the methods
associated with the Bonissone method below, so that discussion will be deferred. For now,
assume the interval-valued certainty for this compound premise is [vL(a), vu(a)]=[0.6,0.8]. The
Lukasiewicz's ply is assumed with its MPG of m(x,y) = max(x + y - 1,0), which satisfies the
contraposition, and the ply certainties are assumed to be v(a -4 b)= 0.8 and v(b -4 a)= 0.5. In
this case, the conclusion certainty interval is given by

[max(vL(a) + v(a -- b)-1,0),min(l,1- v(b -+ a)+ vu(a))],

which evaluates to [0.4,1.0].

To summarize, given an upper and lower bound on the premise along with the validity of
the implication in both the forward and backward direction, an upper and a lower bound can be
constructed on the validity of the conclusion. The construction of the conclusion validity depends
on the MPG function. If only a single-valued representation of the ply is available in the forward
direction, then a range for the conclusion validity can be calculated by using the MPG for the lower
and upper values of the premise validity. However, it is not clear what this range means since the
true validity of the conclusion may not be contained in the interval range.

Bonissone does not use the MPG used in the TV formulation; instead, the detachment
operator is employed to propagate the confidence bounds through the ply. The detachment
operator uses the properties of the T-norm and the S-norm, which are generalized AND and OR
operators, respectively. However, the T-norm has most of the properties of the generating
function, so similar conclusions hold. Recall that the forward direction -4 or sufficiency is
denoted by "suff' and the reverse direction +- or necessity is denoted by "ness". These two
quantities play the role of v(a -4 b) and v(b -- a), respectively, in the TV formulation; and the
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T-norm, denoted by T(.,.), plays the role of both the generalized fuzzy AND operator and the
MPG. An example of a T-norm is the minimum function. The dual of the T-norm is the S-norm
denoted by S(.,.), which plays the role of a generalized fuzzy OR and is related to the T-norm by
the equation S(x,y) = n(T(n(x),n(y))). This equation is a generalized version of DeMorgan's law
that is applied to the T-norm to define the S-norm with suitably defined negation operators. If
n(x) = 1- x, then the definition reduces to S(x,y) = 1- T(1- x,1 - y). An example of an S-norm
is the maximum function. Thus, the lower bound on the confidence of the conclusion is
vL(b) = T(suff, vL(a)) and the upper bound is given by

vj(b) = I - T(v(b -- a),l - vu(a)) = S(1 - ness, vuj(a))

where vL(a) and vuJ(a) are the lower and upper bounds of the premise validity, respectively. So
the certainty interval of the premise propagates through the ply [vL(a), VV (a)] - [ VL(b), vrj(b)].
Bonissone calls this operation conclusion detachment. Note two things: first, the form of the
bounds derived from the T-norm is similar to the single-valued certainty propagation method with
the minimum function replaced by the T-norm. However, the single-valued methods most often
use the possibility or degree of overlap and not the conservative necessity of the inteval-valued
method. In fact, the MPG derives its conservative-ness from the fact that the implication operator
must be a T-conorm. The Bonissone method is related to the TV method because they both use the
T-norm in their construction; however, there is a difference in how they model the implication
operation. The second fact is that Bonissone's results really apply to v(n(a) --- n(b)), assuming
that contraposition holds.

Figure 8 illustrates how the interval-valued certainties are calculated for the three examples
of single-valued certainty shown in figure 4. Here the possibility and the necessity form the upper
and lower bounds on the premise certainty. Assuming again that v(a -4 b)= 1 = v(b -4 a), the
conclusion certainty intervals are illustrated as crisp sets in the figures to the right. The single-
valued result, shown by the dark bar, is superimposed in the interval result to give a visual
comparison. Certainty intervals can be thought of as an approximation to the the terms of the fuzzy
linguistic variable TRUTH, which is discussed later in this report. The important point of this
example is that the three different cases yield three distinctly different intervals of certainty. The
lower bound captures the degree of containment of the data within the fuzzy premise and the upper
bound models the corresponding overlap. In contrast, the single-valued certainty was simply not
able to model the differences in these three cases.

For compound premises of the form

n
npi -- b ,

i=l

the irterval-valued certainty for the premise is determined by using the T-norm. If each clause pi
in the premise has a certainty interval denoted by [ai, A-], then the premise interval is denoted by
[T(al,a2,...,an),T(A1,A2, ... ,An)]. Except for one special case, disjunction is handled by
breaking up the implication into separate rules and then by applying conclusion aggregation to
determine the certainty interval of the conclusion (aggregation is discussed in the following
paragraph). Figure 9 shows how this propagation method applies with the left-turn example.
Note that the interval-value is [0.4, 0.6] for the conclusion, and this interval is different than that
obtained using the TV method.
12



INTERVAL VALUE
Imp

o x

PL MI = DATA
RTAINTY A

IS Wx a FACT OR PROPERTY M

1 f1

A W

Figar 8 E AplsHinthSwSigeVleCrantbt
DiffrentIntrvalValud Crtaitie

x1



tNWN 

0.6

0 INTENT 0 TRUTH
w I

A A 0.8

o0 TRUTH

POSITION OR LANE
MF MF

LOW~~ MO(IG0.4,0.71

0.7

DECELERATION0 TUh

DETECT LEFT-HAND TURN
RULE

IF THE LEFT-HAND TURN SIGNAL IS ON CONCLUSION

AND THE CAR IS IN THE LEFT-HAND LANE [OA,0 6]

AND THE CAR HAS HIGH DECELERATION

THEN THE CAR IS TURNING LEFT

0 TRUTH

Figure9. Detecting a Lef-Hand Turn for the Car Ahead with
InterWa-Valued Certainty Propagation

14



The procedure allows the conclusion certainty to be calculated for a single rule. When
several rules yield the same conclusion, each with different intervals of certainty, then the
certainties must be aggregated. For multiple rules with the same conclusion C, each with
corresponding certainties of [(c, Ci ], the conclusion aggregation is given as

[S(qc2,.. . cn),S(C1,C2,.

which is a conservative method. When S is the maximum function, the aggregated lower bound is
the maximum of the lower bounds and the aggregated upper bound is the maximum of the upper
bounds, effectively increasing the necessity of the conclusion and widening the possibility of the
conclusion. For fusion of information, a tighter bound results by applying an aggregation
procedure called source consensus and yields a conclusion certainty of

[max(cl, c2,...,¢Cn), min(C1,C2,... , C0)].

Source consensus reduces the spread of the certainty interval much like sampling reduces the
confidence interval of an estimate.

Bonissone's method is straightforward and easily implemented, especially if the T-norm is
taken as the minimum and the S-norm is the maximum. The influence of the implication in
Bonissone's method is summarized with the strength of the forward and backward implications.
However, the choice of the T-norm in some sense takes the place of choosing the form of the
implication. Different norms are designed to model the association of the clauses within the
premise (reference 5). If the clauses tend to be independent or orthogonal in nature, the product
norm or T2 (a,b) = ab may be appropriate. If the associations between clauses tend to be positive,
then the T3 (a,b) = min(a,b) norm is appropriate. For negative associations, the norm
T1 (a,b) = max(0,a + b- 1) is suggested. For fuzzy rules, all the clauses may be positively
associated, which means that the T3 norm is a reasonable choice.

In the TV method of propagating evidence through the implications, the designer chooses
both the implication and the T-norm before estimating the certainty interval in the premise. In
Bonissone's method, the functional form of the ply does not have to be determined, but different
T-norms may be used in determining the premise, the conclusion detachment, and the conclusion
aggregation. The interval-valued certainty representation, more complex than the single-valued
certainty, better captures the true range of certainty values from subsethood to overlap. This
interval-valued representation can also be thought of as a crisp set defined as a closed interval
which, in turn, may be represented as a membership function. This alternate interpretation
suggests using a fuzzy set to represent the certainty, which is discussed in the next section.

FUNCTIONAL-VALUED CERTAINTY PROPAGATION

The functional-valued certainty propagation approach is a generalization of both the single-
valued and interval-valued certainty representations, which uses Dubois and Prade's Fuzzy
Inclusion Index (referred to as the index) to represent the satisfaction of the premise (reference 15).
In binary logic, each clause of the premise must evaluate to either true or false. In fuzzy logic,
clauses take on grades of truth ranging from absolutely false to absolutely true, which correspond
to the false and true of binary logic. Between these two levels, many linguistic grades of truth
exist, each represented as a mem in the linguistic variable calied TRUTH. Figure 10 indicates the
values of one possible definition of the linguistic variable TRUTH (reference 16). The names true,
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very true, etc., are the terms of this linguistic variable, and the collection of these terms is called the
term set; the fuzzy set associated with each term or its semantic rule will also be called a tm; and
the index is a fuzzy set that represents the satisfaction of the premise. To propagate the certainty
through the ply, one could propagate the fuzzy set pointwise using the MPG (reference 4).
Another alternative is to use the Compositional Rule of Inference (CRI) and one of the many
existing plys. Baldwin's investigation to this latter approach to approximate rasoning is discussed
in the following paragraphs (references 17 and 18).

Figre 0.TRnUTHi aial RT

FALSE ~~FALSETRERU

offASETREEf

S) TRUTH VALUF

Figure 10. Ldnguiic Variabi TRUTH

The truth of the premise is represented by a fuzzy set, not just by a single real number or by
an interval of certainty. This fuzzy set can be compared with the linguistic terms of the variable
TRUTH. In fact, this fuzzy set or index can be thought of as an approximation to terms like true,
very true, almost true, absolutely true, false, very false, absolutely false, etc. Previous certainty
measures can be thought of as approximations of the index. The single-valued certainties can be
thought of as approximations to the lower or to the upper bound or to some other aspect of the
index. Certainty intervals can be thought of as crisp set approximations to the Fuzzy Inclusion
Index (reference 15). The Fuzzy Inclusion Index includes information from the other two
representations of certainty and can be fuzzified by fitting or matching itself to the terms of the
linguistic variable TRUTH, allowing a linguistic representation of certainty that may be handled as
a symbolic or a numeric quantity.
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Figure 11 illustrates three examples where the truth of the premise is represented as a Fuzzy
Inclusion Index. A comparison of figure 11 with the interval-valued representation of figure 8
should convince the reader that the interval-valued representation is an approximation to the index.
Again the single-valued certainty is represented by the dark vertical bar. The index is propagated
through the Lukasiewicz implication operator using the CRL It is known that the CRI using the
Max-Min operators is an expansion operator in Turksen's terminology (reference 19) so that the
level of truth in the conclusion will always be less than the premise; this will be made clearer by
considering an example.

HF
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Figure 11. Examples Having the Same Single-Valued Certainty but
Different Fuzqy Inclusion Indices
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Consider the left-hand turn example. Figure 12 indicates how the fimctional-valued
certainty looks for each of the premise clauses as well as the certainty for the intersection of the
clauses. The certainty for the premise is calculated pairwise from the clauses in the premise. So
for each clause, the index is calculated and then combined with the index of the above clause, so
the second index drawn next to the clause index is the cumulative index for the premise. The
functional-value certainty of the conclusion is calculated using the Lukasiewicz ply. The expansion
property means that the truth of the conclusion deteriorates with each rule. Figure 12 verifies just
how rapidly the truth degraded in a single passage through the ply. Baldwin (reference 17) has
illustrated the effect of changing the ply on the rate of deterioration of the truth as it is propagated
through the ply. In control systems, rapid truth degregation through a ply is not a problem since
only one level of implication is normally needed as illustrated in the braking example. However, in
multiple level implication systems such as expert systems, truth degregation through the ply is a
concern that must be addressed before this method can be applied.
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Figure 12. Detecting a Left-Hand Turn for the Car Ahead Using
Truth-Functional Representation
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Although the Fuzzy Inclusion Index is a much more sophisticated certainty representation,
it is also an intuitively appealing notion. Propagation of this functional-valued representation
through the ply markedly increases the time complexity of the algorithm. Moreover, unless the ply
is designed properly, the truth deteriorates so rapidly that the method will not be effective through
multiple levels of reasoning. Baldwin is well aware of both problems (reference 20). This
approach needs further research to be an effective tool and to understand the tradeoff between the
design of the ply and the deterioration of the truth.

SUMMARY AND CONCLUSIONS

In this report, the propagation of evidence through fuzzy rules has been studied. Evidence
or data must be matched to the premise of the rule, and the strength or certainty of the match
determines how strongly the conclusion is asserted. So propagating evidence is tantamount to
propagating certainty. Three certainty representations have been studied along with the methods to
propagate the certainty through the rule to the conclusion. The representations were ordered by
increasing complexity proceeding from a single-valued representation through an interval-valued
representation to a functional-valued representation. It is conceivable that all dtm methods could
be used in a single system. Single-valued representations are limited in their ability to depict a
match between the data and the rule premise; although very practical, their success probably hinges
on the matching algorithm and the particular application. The interval-valued representation is
better able to represent the premise certainty by capturing the spread of certainties for which the
data could match the premise. Propagation through the implication is easy to compute and the
aggregation of conclusion certainties is also possible. A functional-valued representation is the
most general and the most difficult to implement and gives a good indication of how the data match
the rule premise. Propagation through the ply is tricky and the choice of the ply-CRI method
seems critical. This last method has the most promise theoretically, but also is the least practical
since it is complicated and still the subject of research.

For classification problems where the feedback loop is indirect, it is recommended that a
more sophisticated measure than a single-valued measure be used. In this report, only two other
alternatives have been considered and the interval-valued certainty measure using Bonissone's
method is the preferred choice. Propagation of evidence through fuzzy rules is still a problem of
current research. No definitive solutions exist and any solution is tied to a specific application
through the matching algorithm, the association of the premise clauses, and the age utility of the
conclusion. Further study of this problem is clearly needed and very applicable to the problems
being studied.
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APPENDIX A
INTERPRETING AND APPLYING THE FUZZY INCLUSION INDEX

INTRODUCTION

TIe Fuzzy Inclusion Index (index) is a patem matching measure that denotes the similarity or
the degree of match of two fuzzy sets. The index itself is a fuzzy set and represents the
compatibility of one fuzzy set to another fuzzy set. The set being tested will be called the test set or
the data. Thc reference set will be called the premise or property or reference sL The Fuzzy
Inclusion Index may be interpreted as

* The truth the test set possesses a property or satisfies a premise,
1 The goodness of fit of the test set to the reference set,

* One of the terms of the linguistic variable TRUTH,
* The truth the test set is a subset of the reference set.

The index can be used as a general measure of the truth of the premise and can be propagated
through the implication operator (ply), which will alter the shape of the index yielding a fuzzy set
that represents the truth of the conclusion. However, the conclusion is then a function of the
choice of the ply and the definition of the variable TRUTH This approach is more general than
single-valued or interval-valued representations of certainty.

This appendix defines the index and gives a detailed example of the calculations to construct
the index. Then the interpretation of this fuzzy set as the truth that the data satisfy some premise is
discussed. A parallel is drawn between the construction of the index and the statistical tests that are
used if a random sample comes from a given distribution. The index is then compared with typical
terms in the linguistic variable TRTrH, and a matching mechanism is described to find the
"closest" term in TRUTH. The calculation of the possibility and the necessity from the index is
illustrated, showing that the index contains the information that is often used as bounds to measure
the compatibility of fuzzy sets. Finally, an example is given which illustrates how a fuzzy truth set
propagates through an implication operatr.

DEFINITIONS

The definition of the index is given in Dubois and Prade's classic text (reference 21) as an
application example of the extension principle, which shows how to transform the membership
function of variable x through a functional mapping. If y = f(x), then the extension principle
relates the membership function of y to the membership function of x. According to (reference
21) the fuzzy set induced by the function, f is

0'r(y)= SUP min(PAi (xl)'",P4Ar (Xr))
X1 ,...,xr

rmy=f(Xl,...,Xr)

provided the inverse of the point y is not empty; otherwise pu(y) = 0, if f-'(y)= . Here the
function f is pB (x), so the definition for one dimension becomes

A-1



T z(y) = sup A(X),

X*Y=I B(x)

Vye[O,l] provided, of course, that JB(x) has a nonempty inverse. Note that pq(y) is inteipreted
to be the compatibility of A wn B, or A is B, or the satisfactio of the premise B by the data A.
Another int Ion is as the generalization of the definition of the membership function at the
point x to the membership function at the fuzzy set value B. In fact, rewriting the definition as

p(y) = sup PA(X),xept l(x)

it folows that 1h(Y) =iLA °/BI (y) where the dot is the composition of the two functions.
Conceptually, this last formula is easier to interpret. For example, B=A, the p1 .(y) is the identity
function sou (y) = y. It will be shown later that this result can be interpreted to mean that it is
true that A is compatible with B, where "true" is the value taken by the linguistic variable TRUTHJ

TRUTH THAT THE FUZZY TEST SET SATISFIES A PROPERTY

To illustrate the calculation and graphical construction of the Fuzzy Inclusion Index, consider
two fuzzy sets: B is the reference set in the database used to represent the concept of TALL. Let A
be the data representing the average height of a team. What is the truth of the statement the temn is
tall? This truth is illustrated in figure A- 1 where the set B has a trapezoidal membership function
and the test data have some continuous unimodal shape. The index is calculated at the five points
(0, 1/4, 1/2, 3/4, 1 ) and the fuzzy sets are constructed from the piecewise linear approximation
based on these five points. For example, for the assignment y = 1, the inverse of the membership

function Ur(Y) = AA o- AB(y) has the value of /a(l) = sup PAA(x) as shown in figure A-1.
xe[a,bJ

Note the inverse of a single value for the trapezoidal form of the linguistic variable may either be a
closed interval, a pair of points, or the union of two infinite intervals. The inverse of value y = 1
is a closed interval and the inverse of the point y = 1/ 2 gives two points (c,d). The value is
calculated from /-(l / 2) = maxILpA(c),UAA(d)j where it is obvious that pr(l / 2) = tA(C) since

PUA (d) = 0. To calculate the index, first find the inverse of the membership value, which is a crisp
set, then find the supremum ofPA (x) over this crisp set. Thus, the more the test set A is a subset
of B, the more the set possesses the same property represented by B or satisfies the premise
represented by B.
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Figure A-.1 Calculation of the Fuzz Inclusion Index

The index is the truth functional that the fuzzy set A satisfies the property represented by

PB (x) and thus the truth that A is a subset of B. To see this, compare the index with the terms of
the linguistic variable TRUTH. For example, the term true is defined by Baldwin (reference 18,
p. 135) as tue(x) = x. The other variables are defined as powers or roots of the identity map as:

= 2 (), ~ x) =1/2

fiverytweW =/22We(X),/2fytruet(x) 1/2u12(x), and pabsolutelytrue (x) = 6(x- 1) where
6 is the Kronecker delta function. The definitions for false, very false, fairly false, and absolutely
false follow in an obvious manner from the definition ufalse(x) = 1- x. Refer back to figure 10
in the text for an illustration of these definitions; note that the membership functions are only
sketched, and are not plotted according to the definitions given above. The linguistic term
"undecided" is /undecidedd(X) = 1,VxE[O,1] and zero, elsewhere. Undecided means that nothing
can be decided about the truth of the statement. So the index is a fuzzy set that represents the truth,
which can be seen by comparing it with the terms in the linguistic variable TRU . However,
before comparing these fuzzy sets more directly, the concept of functional distances must be, at
least, defined; this is done in the following section.
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GOODNESS OF FIT INTERPRETATION

Strictly speaking, fuzziness and probability measure different aspects of uncertainty. Thus
any comparison between these two disciplines must be done carefully and in a way to only draw
general parallels, nothing more. With this disclaimer, there are two statistical tests similar to the
index: the Kolmogorov-Smirnov test and the Chi-Squared goodness of fit test. These are
addressed in turn.

In this comparison, the cumulative distribution function (CDF) plays the role of the fuzzy set
representing the premise. Note the comparison is already flawed since fuzzy sets can look like
CDFs, but they can also look like probability density functions (PDFs) as welL In the
Kolmogorov-Smirnov test, the empirical CDF is compared with a known CDF. The more
identical these functions are, the more successful the test. To illustrate the parallel, consider the
following example: a sequence of independent and identically distributed random variables, say
X1 ... ,Xn, with CDF F(x) where F(x) is known. Suppose the estimate of F(x), called F(x),
is used. How is the goodness of fit measured? Usually, a distance measure called the

Kolmogorov distance is constructed and is defined as sup I(x) - F(xJ, and this distance is tested
xEX

against a threshold (reference 22). The test is rejected if the distance is too large. Other distances
such as the Levy distance can be used as well. The Levy distance for two CDFs, F, and G, is
defined (reference 23) to be dL(F,G) = inf{(eVx, F(x- e)- e < G(x) • F(x + e) + e). These
distances will be mentioned again.

Another way to implement the test is to first define another sequence from the data samples
F(X 1 ),...,F(Xn) and look at the distribution of this sequence. If it is close to the uniform CDF,

then the estimate F(x) is close to F(x). The uniform CDF is given by P(X < x) = x,Vxe[O,1],
and is 0 if x < 0 and I if x > 1. This technique, well known in nonparametric statistics, is often
used in convergence proofs, and is similar to the concept used with the index. When A and B are

identical fuzzy sets, the composition of JA o IBl (.) becomes the identity map. When this
composition is achieved, not only is A a subset of B, but also A and B are identical, meaning their
membership functions are identical. Here, the sample is considered to have the same distribution

as F(x) if FV oa (x) - x; the index measures not only subsethood but also the similarity of the
two fuzzy sets or equivalently their membership function. Note the - is due to the fact that F(x)
is often continuous and the empirical CDF F(x) is discontinuous by definition.

The second comparison to the index is the chi-squared goodness of fit test (reference 24)
where the sampled histogram is compared with the expected histogram. This parallel is harder to
draw. In the chi-squared test, one forms partitions in input space called bins and counts the
number of samples that fall into each bin. The resulting plot when properly normalized gives the
histogram. The same thing is done with the theoretical density function obtaining the number of
expected samples in each bin and then constructing a histogram. Differences of the number of
samples in each bin between the theoretical and empirical histograms are calculated, squared,
properly normed, summed over the bins, and then compared with a threshold. The hypothesis that
both samples came from the same distribution is rejected if the test statistic exceeds a threshold.
What is being measured is the similarity of the theoretical density function fx (x) to the estimated

density function fx (x), or another way of saying this is determining the closeness of f-1 a f(x)
to the identity function. Again, this comparison method is similar to the concept of the index.
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COMPARING THE INDEX TO THE TERMS OF TRUTH

If the truth of a premise is to be evaluated, the index in one sense begs the question. One has
a function, which is a truth functional, but no specific term or label in the term set of the linguistic
variable TRUTH. Having defined the Kolmogorov distance, a more direct comparison between
the index and the terms of the linguistic variable TRUTH can be made. The regularity of these
TRUTH term definitions and of the index allow the application of the Kolnmogorov and Levy
distances to the matching process. The decisions become simplified, although the matching
process has been pushed down another level, and that level is more analytically tractable. The
Kolmogorov metric supplies a good comparison between the fuzzy sets, except when there are
abrupt changes in the membership function because this metric does not metrize the space of
CDFs. The Levy metric does metrize the CDF space and is a better choice for this matching
process.

Kolmogorov and Levy metrics allow a direct comparison between the index and the terms of
the linguistic variable TRUTH, so the index can be fuzzifled/defuzzified to yield a quality of match.
The index is a fuzzy set and the output of the matcher, but now this is to be interpreted as a
linguistic term such as "very true". The metrics allow the "closest" term to be determined. To do
this, compare the index with each member of the term set of TRUTH, and determine the term set
with the closest to the index. If ur(x) is the inclusion index of matching the fuzzy set A to the
property B and lixryrw (x) is a term of TRUTH then the distance between them is

d(very true, r) = sup IAverytrue(X)-p•r(x)i.xe[ 0,1]

This distance is constructed for each term of the linguistic variable TRUTH, and the term with the
smallest distance is used as the variable value, i.e., the index has been defuzzified. Ignoring the
mathematical complications, the concept of finding the closest term set is simple; choose the terms
of TRUTH that look most like the index.

TRUTH TEST SET IS A SUBSET OF THE REFERENCE SET

The index measures the truth that the test set is a subset of the reference set. For example, it is
known that if A is not only a subset of B ( A a B ), but also a subset of the core of B, then the
index is "absolutely true." The core of B is defined as core(B) = (x IB(X) W =1 and is illustrated
in figure A-2a. In this illustration, the set B is a reference set and the data set is A. In figure A-2b
and A-2c, the index is illustrated for data sets that are on the edge of the reference set. These
examples show that the index measures the truth that A is a subset of B. When the data set A is
disjoint from the reference set B, i.e., the support of B does not intersect the support of A
(A(x) > 0 implies AB(X) = 0 ), then the index is "absolutely false." Note the linguistic variable
TRUTH illustrated in figure A-2 clearly lacks a complete term set. Figure A-2b shows that terms
must be included with unimodal peaks near the term "absolutely false." The Beta densities that are
often used as priors in Bayesian statistics would nicely augment the term "false," e.g.,

Palmost false(x) = x'12(1 Vx)5 .
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0U
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Figure A-2. Three Examples of the Inclusio Index. Property or

reference set is B and Me test set is A ((a) A is a subset of B, (b) A is
near eft edge of B, and (c) A is near right edge of B).

The calculation of the necessity and possibility from the index is found in reference 15. H(S)
is the possibility of the statement S, where S says how well the data set A satisfies the reference set
B. Recall that

.ur (y) sup JLA(X).
X.Y=/LB(X)

The possibility A is B is given by H(S) = sup min[.Ur(v),v] and the necessity of the statement is
v

given by N(S) = inf max[l - .u(v), v]. The graphical calculation for these fuzzy sets is illustrated
V

in figure A-3. The possibility, which corresponds to the belief in the Dempster-Shafer
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terminology, fiox an upper bound the statment being true - provided the semantic
interetation of the term true is the identity function. Likewis, the necessity, which cowponds
to the plausibility in the Demputer-Shafer terminology, is a lower bound on the statemwet being
true. So judging from figure A-3, the degrees of possibility and necessity, that S is true is given by
0.6 and 1.0. In everyday terminology, this is Wi saying on a scale of 0 to 10, the statement is true
somewhere between a 6 and a 10.

1 ICLUSMO NDE"X1(y
-1

A (B) P -= COWATILUTY OF THE NONFUZY VALUE
B B XWITH FUYSETB

IL (A) = COWATBILITY OF THE FUZZY VALUE A
0 (A) y BWITH FUZZY SETB

pL (x)
B

NECESSITY OF QUERY POSSIBILITY OF QUERY

N (S) "inf mex(1 - t~v), v ) l ]-[(S) sup min( J.,(v),v)

1 1

-1 -1
pop~y) oL(y)

AB AB

0 o . y 0 Yp (x) p(x)

B B
Figure A-3. Calculation of the Necessity and Possib from the Inclusion Index

PROPAGATION OF THE INDEX THROUGH AN IMPLICATION

The index allows the truth of a premise to be represented as a fuzzy set. The CRI, developed
by Zadeh, may be used to deermine the truth of the conclusion, given the truth of the premise and
the definition of the implication. Confusion arises because of the many ways to define the
implication operation. There are a multitude of implication operators with different properties.
Moreover, the way the implication is applied can differ depending on the domain of the premise
and the conclusion; i.e., the ply operator may be used only on the truth values as is done in
classical logic, and the truth of the conclusion is then re-interpreted on the domain where the output
variable is defined. However, one may also skip the translation into truth values and work on the
fuzzy data set and use the CRI from the input space directly to the output space; in fact, this is
precisely what Yager does (reference 25).

To see the relationshl tetween these two approaches, translate from Yager's approach to
Baldwin's approach. The whole basis for the modus ponens is Zadeh's CRI For modus ponens,
suppose the rule is A(x) -4 B(y) then the CRI gives PB,(x) = sup min[pA'(X),l(x,y)] where

xeY
I(x,y) is the implication relation. For the Lukasiewicz's ply, I(x,y) = min(lI - x + y) or for this
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case pB'(x) = sup min[PA'(x),min(Ll -pA(x)+pB(y))]. However, it is known from the
xeY

fuzzy data A' how well the premise is satisfied or how well A' satisfies the property A. In fact,
the index measures how well the property is satisfied and by definition the index is given by

TA,(z) W = AXpAl(z). Now substituting z = MA(x) in the CRI and observing that as the
variable x ranges over its domain, z ranges over [0,1], one has

AB'(Y))= sup min[fp A,(z),min(1,1- z +PIB(Y))].

ze[0,lJ

Likewise, defining w = JB(Y) and substituting this into both sides of the CRI and using the

definition of the index to give AB, a ;Bl(w) = p•B' (z)(w)=p (z)yields

€'rB' (w) = sup minLur A , (z),min(1,1 - z + w)].
z0j1] A

Baldwin uses this resuk in his paper to rela the validity of the premise to the validity of the
conclusion when both validities are represented as terms of the linguistic variable TRULT. Figure
A-4 gives a detailed example of the calculation represented by the above formula to detemine the
truth of the conclusion Pur, (w) from the premise true value PurA (w) using Lukasiewiczs ply.
Note the dashed lines in figure A-4 are for different values of w={0.0,0.25,0.5,0.75,1.0) in the
above formula.

MF ePx)

A B(X) a FACT IN THE KNOWLEDGE BASE
(x) AAx) = DATA FROM THE SENSOR

0 X

PREMISE TRUTH VALUE CONLUIO TRUTH VALUE

- -- -a- - -/% /
/

Figure A.4. Pushing the Fuzzy Inclusion Index Through the Implication
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APPENDIX B
MATCHING DATA TO FACTS

Evaluating the validity of the jiunise anid detemiin the validity of the implication ane the
subject of a vast amount of litertture. In this repor the validity of the nle or impication is
assumed to be known and specified by the desine of the rulebase. Te validity of thnep ll
can be calculated from the data and the clauses m the premise. In particular, the clause A i B.
where A and B am both fuzzy sets, is interpreted as A has the property B. Possibility theory
provides one method to calculate the validity. The claus asks how compatible the fuzzy set A is
with the fuzzy set B. If PA(X) and uB(x) represent the membehip functions of A and B,
respectively, the one measure of the compatibility or degme of overlap of these two fuzzy sets is
given by the possibility H(A is B) = sup minLU[A(x),PB(X)]. Other terms used to describe this

xeY
process are pattern matching and satisfaction of the premise. No matter what the terminology, the
possibility is an optimistic match of the data A to the property B. The H(A is B) is interpreted as
the degree that A satisfies B. If the fuzzy set A is a detministic value A = (a), then the
possibility reduces to H(A is B) = pB(a), which is the degree of membership that the point a has
in the fuzzy set B.

A second measure called the necessity, denoted by N, is a far more stringent measure of
the concept A has the property B. In fact, it might better be interpreted to mean that A is a subset
of B since it has the value I if and only if the set A only has support in the core of B. That is, if
support(A) = (xF IPA(x) > 0) and if the core(B) = (xl IB(x) = 1), then necessity is I if and
only if support(A) r core(B). The necessity N is defined by the formula

N(A is B) = inf max[1 -PA (X),PB (x)]
xEX

and is bounded above by the possibility N(A is B) < rH(A is B). The necessity and the possibility
of the event A is B are two examples of matching algorithms. For this report, the N and l are all
that is needed to use the Bonissone results. Figure 7 showed the calculation of both the necessity
and the possibility. However, these are not the only bounds that may be used.

Matching algorithms may also be based on similarity measures. Kosko's subsethood

measure is one example (reference 26). In this approach, fuzzy sets are presented as vectors or

points in a space In where I=[O,1] and n is the dimension of the fit vector or fuzzy unit vector
definedas [ptA(Xl),...,AA(Xn)] making up the vector. This approach works for finite fuzzy sets,
which are defined as A = PA(Xl) / X1+...+PA(xn) x/n. The cardinality of a fuzzy set is defined
as

n
M(A)= YPA(Xi)

/-1

where PUA (xi) is the membership function for the set A at the point xi. Then the subsethood
theorem of Kosko gives an expression to calculate the degree that A is a subset of B; according to
Kosko (reference 26, Chapter 7), S(A,B) = Degree(A Q B) = p F(2 B)(A g B) where F(2B)
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is the fuzzy power set of B, Lt., all the fuzzy subsets of B. With these definitions, the subsethood
th== says S(A,B) = M(AUB)IM(A). Note that S(.,.) denotes the subsethood measure,
taking values in the interval [0,1].

Of use here is an associated concept called SUPERSETHOOD(AB) = 1 - S(AB), which
represents the concept that A is a supeziet of B and also the converse of the concept that A is a
subset of B. Koskocalls this concepttefitviolationstrategy. Note AcBc*pUA(X)pI5B(x)
so that a violation occurs when x is s.t. MA (x) > PB(X)- With this view of the problem, Kosko
simply sums over all X where a violation occurs, i.e., PA(x)-UB(X)> O. So the

SUPERSETHOOD(AB) = [ Xmax(OtAA(X)- LB(X))]/- A X (X).

which is easy to calculate from the fuzzy sets. The SUPERSETHOOD(AB) is the avag number
of violations of the subset property. The generlizato t continuous membership functions is
then dear.

SUPERSETHOOD represents the concept that A is a superset of B and also provides an
efficient way of calculating the subsethood by using either summation or integration. Also of

interest is the geometric interpnetation of fuzzy sets as points in In. Reference to figure B- I shows

that the set of all fuzzy subsets or F(2B) is a closed subregion of the space In and thus is a

compact set. Defining the subset B" of F(2B) as the closest set to the set A, Kosko shows

(reference 26, eq. 7.30 and 7.31) d(A,F(2B)) = inf(d(A,B')IB'e F(2B)} B d(A,B'). Then the
BO

subsethood can be defined as S(A,B) = 1 - d(A,B') / M(A), which is also illustrated in figure B-1

where the distance is taken to be 11where Lp = [(A(xi)-PB(xi p] P.
i=1

D(AXI) - NA) S RSETHOO(A,)
X2 K(A) a CAROPNAUTY OF A

S(A,B)-l - D(A,B*)A)

IX2) , (0,1) SET' OF ALL ,X a (1,1)

SUBSETS OF B

D(A3)'

F(2 1A)

(,1 ) (1,0)

F '(0,0)

Figure B-I. Fucty Sets as Points wad Kosko's Subsethood Measure
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In effect, the S(AB) is 1 minus the average violations of the subset OPrty and this averaging
effect makes it a good candidate for the single-valued measure of certainty.

One would think that matching a fuzzy data point to some fact or premise woukd!jUst be a
pattern recogniti problem. Wben matching data to some fuzzy fact or semantic rule the
linguistic variable, the question really being asked is if thisatern or these data are a subset of the
fuzzy set rpesenting the semantic rule or the fact. In the ite case, fuzzy sets are represented as
fuzzy unit vectors or fit vectors. Data fits and premise fits may not even have the same
dimensions. The data must be matched to the appropriate substring of the premise fit, so one must
be careful in compaing matching with pattern recognition. The data must be propertly
reformulated, in fact, rformulated for each pattern in the n-class problem.

Lin and Lee (references 27 and 28) have used the modified version of Kosko's subsethood
to do training of the term sets for fuzification. Here they construct a symmetric difference type of

operator. In set theory, the symmetric difference AAB = (ABC)U(ACB) where AC means the
complement of A. MTh fuzzy counterpart of this approach is E(A,B) = Degree(A = B) =
Degree(A Q B and A :2 B). The result is similar to the Entropy-subsethood theorem with
E(A,B) = M(AUB) / M(AnB) which is a number E(A,B)e[O,1]. In terms of distances,

S(A,B) = 1 -[ d(A,B )+ d(B,A )] /M(AUB) When A=B, E=I, and AnB = o, then E--.
This measure is used by Lin and Lee to train terms set dynamically, and this measure is appropriate
when one is testing for equality. When testing for subsethood, the previous measure S(AB) is
more appropriate. The latter quantity is suggested when trying to satisfy the premise or predicates
in a premise.
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